



## St Joseph's Calculation Policy 2022/23

"At St Joseph's, we learn, love and grow with God at the centre."





### Progression of calculations

|             | EYFS/Year 1                                                                                                  | Year 2                                 | Year 3                                            | Year 4                         | Year 5                                            | Year 6                                                                         |
|-------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------|---------------------------------------------------|--------------------------------|---------------------------------------------------|--------------------------------------------------------------------------------|
|             | Combining two parts to make a whole: part whole model.                                                       | Adding three single digits.            | Column method-<br>regrouping.                     | Column method-<br>regrouping.  | Column method-<br>regrouping.                     | Column method-<br>regrouping.                                                  |
| Addition    | Starting at the bigger<br>number and counting<br>on- using cubes.  Regrouping to make<br>10 using ten frame. | Use of base 10 to combine two numbers. | Using place value counters (up to 3 digits).      | (up to 4 digits)               | Use of place value counters for adding decimals.  | Abstract methods.  Place value counters to be used for adding decimal numbers. |
|             | Taking away ones  Counting back                                                                              | Counting back Find the difference      | Column method with regrouping.                    | Column method with regrouping. | Column method with regrouping.                    | Column method with regrouping.                                                 |
| Subtraction | Find the difference                                                                                          | Part whole model                       | (up to 3 digits<br>using place value<br>counters) | (up to 4 digits)               | Abstract for whole numbers.                       | Abstract methods.  Place value counters                                        |
| btra        | Part whole model                                                                                             | Make 10                                | ,                                                 |                                | Start with place value counters for               | for decimals- with different amounts of                                        |
| Su          | Make 10 using the ten frame                                                                                  | Use of base 10                         |                                                   |                                | decimals- with the same amount of decimal places. | decimal places.                                                                |





| Multiplication | Recognising and making equal groups.  Doubling  Counting in multiples Use cubes, Numicon and other objects in the classroom                                        | Arrays- showing commutative multiplication                                                    | Arrays  2d × 1d using base  10                                                                                                                        | Column multiplication- introduced with place value counters.  (2 and 3 digit multiplied by 1 digit) | Column<br>multiplication  Abstract only but<br>might need a<br>repeat of year 4<br>first(up to 4 digit<br>numbers<br>multiplied by 1 or 2<br>digits) | Column<br>multiplication  Abstract methods<br>(multi-digit up to 4<br>digits by a 2 digit<br>number)                                                             |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Division       | Sharing objects into groups  Division as grouping e.g. I have 12 sweets and put them in groups of 3, how many groups?  Use cubes and draw round 3 cubes at a time. | Division as grouping  Division within arrays- linking to multiplication  Repeated subtraction | Division with a remainder-using lollipop sticks, times tables facts and repeated subtraction.  2d divided by 1d using base 10 or place value counters | Division with a remainder  Short division (up to 3 digits by 1 digit-concrete and pictorial)        | Short division  (up to 4 digits by a 1 digit number including remainders)                                                                            | Short division  Long division with place value counters (up to 4 digits by a 2 digit number)  Children should exchange into the tenths and hundredths column too |





| Objective & Strategy                                                          | Concrete                                                                                                           | Pictorial                                                                                                                                                               | Abstract                                                                                                      |
|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| Combining two<br>parts to make a<br>whole: part- whole<br>model               | Use part part whole model. Use cubes to add two numbers together as a group or in a bar.                           | Use pictures to add two numbers together as a group or in a bar.                                                                                                        | 4 + 3 = 7  Use the part-part whole diagram as shown above to move into the abstract.                          |
| Starting at the big-<br>ger number and<br>counting on                         | Start with the larger number on the bead string and then count on to the smaller number 1 by 1 to find the answer. | 12 + 5 = 17  10 11 12 13 14 15 16 17 18 19 20  Start at the larger number on the number line and count on in ones or in one jump to find the answer.                    | 5 + 12 = 17  Place the larger number in your head and count on the smaller number to find your answer.        |
| Regrouping to make 10. This is an essential skill for column addition later.  | Start with the bigger number and use the smaller number to make 10. Use ten frames.                                | Use pictures or a number line. Regroup or partition the smaller number using the part part whole model to make 10. $9 + 5 = 14$ $11                                   $ | 7 + 4= 11  If I am at seven, how many more do I need to make 10. How many more do I add on now?               |
| Represent & use<br>number bonds and<br>related subtraction<br>facts within 20 | 2 more than 5.                                                                                                     | Craw 2 more hata                                                                                                                                                        | Emphasis should be on the language '1 more than 5 is equal to 6.' '2 more than 5 is 7.' '8 is 3 more than 5.' |





| Objective &            | Concrete                            | Pictorial                                  | Abstract             |  |  |
|------------------------|-------------------------------------|--------------------------------------------|----------------------|--|--|
| Strategy               |                                     |                                            |                      |  |  |
| Adding multiples of    | 50= 30 = 20                         |                                            | 20 + 30 = 50         |  |  |
| ten                    | 11111                               |                                            | 70 = 50 + 20         |  |  |
|                        |                                     | 3 tens + 5 tens =tens                      | 40 + □ = 60          |  |  |
|                        | Model using dienes and bead strings | Use representations for base ten.          |                      |  |  |
| Use known number facts | Children explore ways of            | 20                                         | + 1 = 16             |  |  |
| Part part whole        | making numbers within 20            | + = 20 20 - =                              | 1 + = 16             |  |  |
|                        |                                     | += 20                                      |                      |  |  |
| Using known facts      |                                     | ∀ + ∮ = .‡.                                | 3 + 4 = 7            |  |  |
|                        | 000 000 0000                        | +      =                                   | leads to             |  |  |
|                        |                                     | + = = = =                                  | 3 <b>0 + 40 =</b> 70 |  |  |
|                        |                                     | • •• •••                                   | leads to             |  |  |
|                        |                                     | Children draw representations of H,T and O | 300 + 400 = 700      |  |  |
| Bar model              |                                     | <b>表表表表表表 系 表 系</b>                        | 23 25                |  |  |
|                        |                                     | 9999999999                                 | ?                    |  |  |
|                        | 3 + 4 = 7                           | 7 + 3 = 10                                 | 23 + 25 = 48         |  |  |





| Objective &                        | Concrete                                                                                              | Pictorial                                                                                                | Abstract                                                                                 |
|------------------------------------|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| Add a two digit<br>number and ones | 17 + 5 = 22 Use ten frame to make 'magic ten  Children explore the pattern.  17 + 5 = 22  27 + 5 = 32 | Use part part whole and number line to model.  17 + 5 = 22  3 2  16 + 7                                  | 17 + 5 = 22  Explore related facts  17 + 5 = 22  5 + 17 = 22  22                         |
| Add a 2 digit num-<br>ber and tens | 25 + 10 = 35 Explore that the ones digit does not change                                              | 27 + 30<br>+10 +10 +10<br>                                                                               | 27 + 10 = 37<br>27 + 20 = 47<br>27 + = 57                                                |
| Add two 2-digit<br>numbers         | Model using dienes , place value counters and numicon                                                 | +20 +5 Or +20 +3 +2  47 67 72 47 67 70 72  Use number line and bridge ten using part whole if necessary. | 25 + 47 $20 + 5$ $40 + 7$ $20 + 40 = 60$ $5 + 7 = 12$ $60 + 12 = 72$                     |
| Add three 1-digit<br>numbers       | Combine to make 10 first if possible, or bridge 10 then add third digit                               | Regroup and draw representation.  + = 15                                                                 | 4+7+6 = 10+7  = 17  Combine the two numbers that make/ bridge ten then add on the third. |





| Objective &<br>Strategy                          | Concrete                                                                | Pictorial                                                                                                                   | Abstract                                                                                         |  |  |
|--------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--|--|
| Column Addition—no regrouping (friendly numbers) | T O Model using Dienes or numicon                                       | Children move to drawing the counters using a tens and one frame.                                                           | 2 2 3                                                                                            |  |  |
| Add two or three 2 or 3-<br>digit numbers.       | Add together the ones first, then the tens.  Tens Units  45  7  9       | tens ones                                                                                                                   | + 1 1 4<br>3 3 7                                                                                 |  |  |
|                                                  | Galadations 21+42 =  21  Move to using place value counters             |                                                                                                                             | Add the ones first, then the tens, then the hundreds.                                            |  |  |
| Column Addition with regrouping.                 | Tens Units  39  15  5  4                                                | Children can draw a representation of the grid to further support their understanding, carrying the ten underneath the line | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                            |  |  |
|                                                  | Exchange ten ones for a ten. Model using numicon and pv counters.     O | 5 1                                                                                                                         | Start by partitioning the numbers before formal column to show the exchange.  536  + 85  621  11 |  |  |





| Objective &<br>Strategy                                                                         | Concrete                   |                                                                                     |              |          |        | Pict      | orial                    |                             | Abstract                                                                                                        | 1_6        |
|-------------------------------------------------------------------------------------------------|----------------------------|-------------------------------------------------------------------------------------|--------------|----------|--------|-----------|--------------------------|-----------------------------|-----------------------------------------------------------------------------------------------------------------|------------|
| Y4—add numbers with up to 4 digits                                                              | counters to<br>a ten and t | ontinue to use dien<br>o add, exchanging t<br>en tens for a hund<br>for a thousand. | ten ones for | •        |        |           |                          | ::                          | 3517                                                                                                            | <b>4-0</b> |
|                                                                                                 | Hundreds                   | Tens                                                                                | Ones         | •        | •      |           | -                        | •••                         | + 396                                                                                                           |            |
|                                                                                                 |                            | 010111                                                                              | 0 22 0       |          | 7      | 1         | 5                        | 1                           | 3913                                                                                                            |            |
|                                                                                                 |                            | IIIII                                                                               |              | Draw rep | resen  | tations u | sing pv g                | rid.                        | Continue from previous work to carry hundreds as well as tens.  Relate to money and measures.                   |            |
| Y5—add numbers with more than 4 digits.  Add decimals with 2 decimal places, including money.   | Introduce d                | tenths tenths ecimal place value exchange for addit                                 | counters     | 139000   | 7 + 81 | 45        | 100<br>000<br>000<br>000 | hundredts<br>00000<br>00000 | 72.8<br>+54.6<br>127.4<br>1 1                                                                                   |            |
| Y6—add several num-<br>bers of increasing com-<br>plexity                                       | As Y5                      |                                                                                     |              | As Y5    |        |           |                          |                             | 81,059<br>3,668<br>15,301<br>+20,551<br>120,579                                                                 | 9          |
| Including adding money,<br>measure and decimals<br>with different numbers<br>of decimal points. |                            |                                                                                     |              |          |        |           |                          |                             | 2 3 · 3 6   9 · 0 8 0   9 · 7 7 0   1 · 3 0 0   9 3 · 5   1   1   2   1 · 2   1   1   1   1   1   1   1   1   1 | <b>-</b>   |





| Objective &                                                                                                 | Concrete                                                                                                                             | Pictorial                                                         | Abstract                                                                     |
|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------------------------------------|
| Strategy                                                                                                    |                                                                                                                                      |                                                                   |                                                                              |
| Represent and use<br>number bonds and<br>related subtraction<br>facts within 20<br>Part Part Whole<br>model | Link to addition. Use PPW model to model the inverse.  If 10 is the whole and 6 is one of the arts, what s the other part?  10—6 = 4 | Use pictorial representations to show the part.                   | Move to using numbers within the part whole model.  5  7                     |
| Make 10                                                                                                     | Make 14 on the ten frame. Take 4 away to make ten, then take one more away so that you have taken 5.                                 | Jump back 3 first, then another 4. Use ten as the stopping point. | 16—8  How many do we take off first to get to 10? How many left to take off? |
| Bar model                                                                                                   | 5-2=3                                                                                                                                |                                                                   | 8 2<br>10 = 8 + 2<br>10 = 2 + 8<br>10-2 = 8<br>10-8 = 2                      |

**Y1** BTRACTION





| Objective &<br>Strategy | Concrete                                                                                                            | Pictorial                                                                       | Abstract                                                                                    |
|-------------------------|---------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| Taking away<br>ones.    | Use physical objects, counters, cubes etc to show how objects can be taken away.  6-4 = 2                           |                                                                                 | 7—4 = 3                                                                                     |
|                         | 4-2=2                                                                                                               | $15 - 3 = \boxed{12}$ Cross out drawn objects to show what has been taken away. | 16—9 = 7                                                                                    |
| Counting back           | Move objects away from the group, counting backwards.  Move the beads along the bead string as you count backwards. | 5 - 3 = 2 Count back in ones using a number line.                               | Put 13 in your head, count back 4. What number are you at?                                  |
| Find the<br>Difference  | Compare objects and amounts  7 'Seven is 3 more than four'  4  'I am 2 years older than my                          | Count on using a number line to find the difference.                            | Hannah has 12 sweets and her sister has 5. How many more does Hannah have than her sister.? |
|                         | sister'  S rencils  3 Erasers  Lay objects to represent bar model.                                                  | 0 1 2 3 4 5 6 7 8 9 10 11 12                                                    |                                                                                             |





| Objective & Strategy                                                                                          | Concrete                                                                               | Pictorial                                                                                                     | Abstract   |
|---------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|------------|
| Regroup a ten into<br>ten ones                                                                                | Use a PV chart to show how to change a ten into ten ones, use the term 'take and make' | 20 - 4 =                                                                                                      | 20—4 = 16  |
| Partitioning to sub-<br>tract without re-<br>grouping.<br>'Friendly numbers'                                  | Use Dienes to show how to partition the number when subtracting without regrouping.    | Children draw representations of Dienes and cross off.   43—21 = 22                                           | 43—21 = 22 |
| Make ten strategy  Progression should be crossing one ten, crossing more than one ten, crossing the hundreds. | 34—28 Use a bead bar or bead strings to model counting to next ten and the rest.       | 76 80 90 93  'counting on' to find 'difference'  Use a number line to count on to next ten and then the rest. | 93—76 = 17 |
|                                                                                                               |                                                                                        |                                                                                                               |            |

**Y**2

# SUBTRACTION





| Objective &<br>Strategy                                        | Concrete                                                                                                                                         | Pictorial                                                        | Abstract                                                                                                            |
|----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| Column subtraction<br>without regrouping<br>(friendly numbers) | 47—32 Use base 10 or Numicon to model                                                                                                            | Darw representations to support understanding                    | $47 - 24 = \frac{23}{20 + \frac{4}{3}}$ Intermediate step may be needed to lead to clear subtraction understanding. |
| Column subtraction with regrouping                             | Begin with base 10 or Numicon. Move to pv counters, modelling the exchange of a ten into tten ones. Use the phrase 'take and make' for exchange. | Tens Ones  29  Tens Ones  20  10  10  10  10  10  10  10  10  10 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                               |
|                                                                |                                                                                                                                                  |                                                                  | 1 4 6                                                                                                               |





| Objective &<br>Strategy                                                                                                                                                    |                  | Cond                                  | crete | Pictorial                                                   | Abstract                                                                                               | VAC               |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------------------------------|-------|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-------------------|
| Subtracting tens and ones Year 4 subtract with up to 4 digits. Introduce decimal subtraction through context of money                                                      | ⊕ ⊕ ⊕ Model proc | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | - 179 | Children to draw pv counters and show their exchange—see Y3 | 2 7 5 4<br>- 1 5 6 2<br>1 1 9 2<br>Use the phrase 'take and make' for exchange                         | I <sup>4</sup> 'V |
| Year 5- Subtract with at least 4 dig- its, including money and measures. Subtract with decimal values, including mixtures of integers and decimal and aligning the decimal | As Year 4        |                                       |       | Children to draw pv counters and show their exchange—see Y3 | "%" X '0 '8 '6<br>- 2   2 8<br>2 8,9 2 8  Use zeros<br>for place-<br>holders 3 7 2 · 5.<br>6 7 9 6 · 5 | TRAG              |
| Year 6—Subtract with increasingly large and more complex numbers and decimal values.                                                                                       |                  |                                       |       |                                                             | **************************************                                                                 | HON-              |





| Objective &                                      | Concrete                                                                                                  | Pictorial                                                    | Abstract                                                                                                                 |
|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| Doubling                                         | Use practical activities using manipultives including cubes and Numicon to demonstrate doubling           | Double 4 is 8                                                | Partition a number and then double each part before recombining it back together.  16 10 6 12 20 + 12 = 32               |
| Counting in multiples                            | Count the groups as children are skip counting, children may use their fingers as they are skip counting. | Children make representations to show counting in multiples. | Count in multiples of a number aloud.  Write sequences with multiples of numbers.  2, 4, 6, 8, 10  5, 10, 15, 20, 25, 30 |
| Making equal<br>groups and<br>counting the total | x = 8 Use manipulatives to create equal groups.                                                           | Draw 2 x 3 = 6  Draw and make representations                | 2 x 4 = 8                                                                                                                |





| Repeated addition  Use pictorial including number lines to solve prob  There are 3 sweets are in 5 bags altogether?  Use different objects to add equal groups  Understanding arrays  Use objects laid out in arrays to find the anrays  Standard  There are 3 sweets are in 5 bags altogether?  3+3+3+3+3+3  2+2+2+2+2=10  Draw representations of arrays to show understanding.  3 x 2 = 6 2 x 5 = 10 | Objective &       | Concrete                     | Pictorial                                                                                 | Abstract |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------------------------------|-------------------------------------------------------------------------------------------|----------|
| Use different objects to add equal groups  Understanding arrays  Use objects laid out in arrays to find the answers to 2 lots 5, 3 lots of 2 etc.  Draw representations of arrays to show understanding arrays  2 x 5 = 10                                                                                                                                                                              | Strategy          |                              |                                                                                           |          |
| rays  swers to 2 lots 5, 3 lots of 2 etc.  2 x 5 = 10                                                                                                                                                                                                                                                                                                                                                   | Repeated addition | Use different objects to add | prob There are 3 sweets in one bag.  How many sweets are in 5 bags altogether?  3+3+3+3+3 |          |
|                                                                                                                                                                                                                                                                                                                                                                                                         |                   |                              | standing.                                                                                 | Na 180   |





| Objective &                                                        | Concrete                                                                                                                                        | Pictorial                                                                                                               | Abstract                                                                                                                                           |
|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| Strategy                                                           |                                                                                                                                                 |                                                                                                                         |                                                                                                                                                    |
| Doubling                                                           | Model doubling using dienes and PV counters.  40 + 12 = 52                                                                                      | Draw pictures and representations to show how to double numbers                                                         | Partition a number and then double each part before recombining it back together.  16 10 10 1 12 20 + 12 = 32                                      |
| Counting in multiples of 2, 3, 4, 5, 10 from 0 (repeated addition) | Count the groups as children are skip counting, children may use their fingers as they are skip counting. Use bar models.  5+5+5+5+5+5+5+5+5=40 | Number lines, counting sticks and bar models should be used to show representation of counting in multiples.  3 3 3 3 3 | Count in multiples of a number aloud.  Write sequences with multiples of numbers.  0, 2, 4, 6, 8, 10  0, 3, 6, 9, 12, 15  0, 5, 10, 15, 20, 25, 30 |





| Objective &                                                                                                     | Concrete                                                                                                                                                                                                                              | Pictorial                                                                               | Abstract                                                                                                                                                             |
|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Strategy                                                                                                        |                                                                                                                                                                                                                                       |                                                                                         |                                                                                                                                                                      |
| Multiplication is commutative                                                                                   | Create arrays using counters and cubes and Numicon.  Pupils should understand that an array can represent different equations and that, as multiplication is commutative, the order of the multiplication does not affect the answer. | Use representations of arrays to show different calculations and explore commutativity. | 12 = 3 × 4  12 = 4 × 3  Use an array to write multiplication sentences and reinforce repeated addition.  5 + 5 + 5 = 15 3 + 3 + 3 + 3 + 3 = 15 5 x 3 = 15 3 x 5 = 15 |
| Using the Inverse This should be taught alongside division, so pupils learn how they work alongside each other. |                                                                                                                                                                                                                                       | 8   X                                                                                   | 2 x 4 = 8<br>4 x 2 = 8<br>8 ÷ 2 = 4<br>8 ÷ 4 = 2<br>8 = 2 x 4<br>8 = 4 x 2<br>2 = 8 ÷ 4<br>4 = 8 ÷ 2<br>Show all 8 related fact family sentences.                    |





| Objective & | Concrete                                                                                                                                       | Pictorial                                                                                                                               | Abstract                                                                                                                             |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| Grid method | Show the links with arrays to first introduce the grid method.  * 10 3 4 rows of 10                                                            | Children can represent their work with place value counters in a way that they understand.  They can draw the counters using colours to | Start with multiplying by one digit num-<br>bers and showing the clear addition<br>alongside the grid.                               |
|             | 4 rows of 3                                                                                                                                    | show different amounts or just use the circles in the different columns to show their thinking as                                       | X 30 5                                                                                                                               |
|             | Move onto base ten to move towards a                                                                                                           | shown below.                                                                                                                            | 7 210 35                                                                                                                             |
|             | Move on to place value counters to show how we are finding groups of a number. We are multiplying by 4 so we need 4 rows  Galaulations 4 x 126 | Bar model are used to explore missing numbers                                                                                           | 210 + 35 = 245  Moving forward, multiply by a 2 digit number showing the different rows within the grid method.  10 8  10 80 3 30 24 |
|             | Add up each column, starting with the ones making any exchanges needed                                                                         | 4 x = 20                                                                                                                                |                                                                                                                                      |





| Objective & Strategy                                       | Concrete                                                                                                          | Pictorial                                                                                                                                                                                 | Abstract                                                                                               |
|------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| Grid method recap<br>from year 3 for 2<br>digits x 1 digit | Use place value counters to show how we are finding groups of a number. We are multiplying by 4 so we need 4 rows | Children can represent their work with place value counters in a way that they understand.  They can draw the counters using colours to show different amounts or just use the circles in | Start with multiplying by one digit num-<br>bers and showing the clear addition<br>alongside the grid. |
| Move to multiplying                                        | © Cakulations 4 x 126                                                                                             | the different columns to show their thinking as shown below.                                                                                                                              | X 30 5                                                                                                 |
| 3 digit numbers by<br>1 digit. (year 4 ex-<br>pectation)   | Hill each row with 126                                                                                            | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                     | 7 210 35<br>210 + 35 = 245                                                                             |
| Column multiplication                                      | Add up each column and the supported by place value counters at the stage of multipli-                            | 12<br>60 12<br>+ 12<br>12                                                                                                                                                                 | 327                                                                                                    |
|                                                            | cation. This initially done where there is no                                                                     | x 300 20 7<br>4 1200 80 28                                                                                                                                                                | x 4                                                                                                    |
|                                                            | regrouping. 321 x 2 = 642  Hundreds Tens Ones  It is important at                                                 | The grid method my be used to show how this relates to a formal written method.                                                                                                           | 28 80                                                                                                  |
|                                                            | this stage that they always multiply                                                                              | 8 × 59<br>= 8 × 60 - 8<br>8 × 6 = 48<br>8 - 60 = 680<br>680 - 8 = 672                                                                                                                     | 1200<br>1308<br>This may lead                                                                          |
|                                                            | the ones first.                                                                                                   | Bar modelling and number lines can support<br>learners when solving problems with multiplica-                                                                                             | 3 2 7 to a compact method.                                                                             |





| Objective &<br>Strategy                             | Concrete                                                                                                                                                                                                                                                   | Pictorial                                                | Abstract                                                                                                                                                                                                       | Y5.6   |
|-----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| Column Multiplication for 3 and 4 digits x 1 digit. | Hundreds Tens Ones  It is important at this stage that they always multiply the ones first.  Children can continue to be supported by place value counters at the stage of multiplication. This initially done where there is no regrouping. 321 x 2 = 642 | × 300 20 7<br>4 1200 80 28                               | 327<br>x 4<br>28<br>80<br>1200<br>1308  This will lead to a compact method.                                                                                                                                    |        |
| Column multiplication                               | Manipulatives may still be used with the corresponding long multiplication modelled alongside.                                                                                                                                                             | Continue to use bar modelling to support problem solving | 1 8 18 x 3 on the first row  (8 x 3 = 24, carrying the 2 for 20, then 1 x 3)  2 3 4 18 x 10 on the 2nd row. Show multiplying by 10 by putting zero in units first  1 2 3 4 0 (1234 x 6)  1 9 7 4 4 units first | CATION |





| Objective &           | Concrete | Pictorial | Abstract                                      |
|-----------------------|----------|-----------|-----------------------------------------------|
| Strategy              |          |           |                                               |
| Multiplying decimals  |          |           | Remind children that the single digit belongs |
| up to 2 decimal plac- |          |           | in the units column. Line up the decimal      |
| es by a single digit. |          |           | points in the question and the answer.        |
|                       |          |           |                                               |
|                       |          |           | 3 · 1 9                                       |
|                       |          |           | x 8                                           |
|                       |          |           | 25.52                                         |
|                       |          |           | 23.32                                         |
|                       |          |           |                                               |
|                       |          |           |                                               |
|                       |          |           |                                               |
|                       |          |           |                                               |
|                       |          |           |                                               |
|                       |          |           |                                               |
|                       |          |           |                                               |
|                       |          |           |                                               |
|                       |          |           |                                               |
|                       |          |           |                                               |
|                       |          |           |                                               |
|                       |          |           |                                               |
|                       |          |           |                                               |
|                       |          |           |                                               |





| Objective & Strategy                                | Concrete                                            | Pictorial                                            | Abstract                    |
|-----------------------------------------------------|-----------------------------------------------------|------------------------------------------------------|-----------------------------|
| vision as sharing<br>se Gordon ITPs for<br>odelling | 00                                                  | Children use pictures or shapes to share quantities. | 12 shared between 3 is<br>4 |
|                                                     |                                                     | 8 Snareu petween 2 is 4  Sharing:                    |                             |
|                                                     | 10                                                  | 4 4 4 12 shared between 3 is 4                       |                             |
|                                                     |                                                     |                                                      |                             |
|                                                     | ave 10 cubes, can you share them equally in groups? |                                                      |                             |
|                                                     |                                                     |                                                      |                             |





| Objective &          | Concrete                                                                                                        | Pictorial Pictorial                                                                                                                                                                                     | Abstract                                                         | V |
|----------------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|---|
| Strategy             |                                                                                                                 |                                                                                                                                                                                                         |                                                                  |   |
| Division as sharing  | I have 10 cubes, can you share them equally in 2 groups?                                                        | Children use pictures or shapes to share quantities.  8 + 2 = 4  Children use bar modelling to show and support understanding.                                                                          | 12 ÷ 3 = 4                                                       |   |
| Division as grouping | Divide quantities into equal groups. Use cubes, counters, objects or place value counters to aid understanding. | Use number lines for grouping  12 ÷ 3 = 4  Think of the par as a whole, spill it into the number of groups you are dividing by and work out how many would be within each group.  20 ÷ 5 = ? 5 x ? = 20 | 28 ÷ 7 = 4  Divide 28 into 7 groups. How many are in each group? |   |





| Objective &<br>Strategy | Concrete                                                                                                                                                           | Pictorial                                                                                                          | Abstract                                                                                                                                                                                              |
|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Division as grouping    | Use cubes, counters, objects or place value counters to aid understanding.  24 divided into groups of 6 = 4  96 ÷ 3 = 32                                           | Continue to use bar modelling to aid solving division problems. $ 20 $ $ ? $ $ 20 \div 5 = ? $ $ 5 \times ? = 20 $ | How many groups of 6 in 24? 24 ÷ 6 = 4                                                                                                                                                                |
| Division with arrays    | Link division to multiplication by creating an array and thinking about the number sentences that can be created.  Eg 15 ÷ 3 = 5 5 x 3 = 15  15 ÷ 5 = 3 3 x 5 = 15 | Draw an array and use lines to split the array into groups to make multiplication and division sentences           | Find the inverse of multiplication and division sentences by creating eight linking number sentences.  7 x 4 = 28  4 x 7 = 28  28 ÷ 7 = 4  28 ÷ 4 = 7  28 = 7 x 4  28 = 4 x 7  4 = 28 ÷ 7  7 = 28 ÷ 4 |





| Objective &<br>Strategy   | Concrete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Pictorial                                                       | Abstract         |
|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|------------------|
| Division with remainders. | Divide objects between groups and see how much is left over  Example without 40 + 5  Ask "How many Example with re 38 + 6  For larger number jumps can be recommended by the second second see the second second second see the second se | 5s in 40?"<br>5 s in 40?"<br>0 5 10 15 20 25 30 35 40 emainder. | a remainder of 2 |

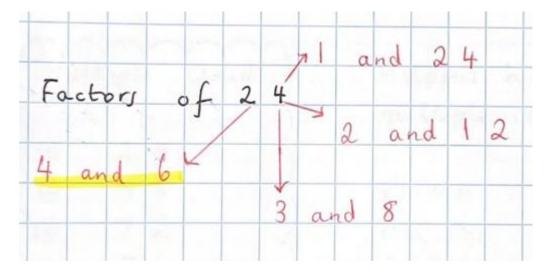




| Objective &<br>Strategy                                     | Concrete                                                                                                                                                                                                                                                                                                                 | Pictorial                                                                                                                                                                                         | Abstract                                                                                                                                                                                                                          |
|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Divide at least 3 digit numbers by 1 digit.  Short Division | 96 ÷ 3  Tens  Units  3  2  Use place value counters to divide using the bus stop method alongside  Use place value counters to divide using the bus stop method alongside  42 ÷ 3=  Start with the biggest place value, we are sharing 40 into three groups. We can put 1 ten in each group and we have 1 ten left over. | Students can continue to use drawn diagrams with dots or circles to help them divide numbers into equal groups.  Encourage them to move towards counting in multiples to divide more efficiently. | Begin with divisions that divide equally with no remainder.  2 1 8 3 4 8 7 2  Move onto divisions with a remainder.  8 6 r 2 5 4 3 2  Finally move into decimal places to divide the total accurately.  1 4 6 16 21 3 5 5 1 1 . 0 |



#### Long Division:




#### **Factor Pairs**

When using long division, we can make the calculation simpler by dividing the divisor into factor pairs.

| 7 | 2 | 0 | 4. | 2 | 4 | 2 |
|---|---|---|----|---|---|---|
|   |   |   |    |   |   |   |

Instead of dividing 720 by 24, we can complete the division using factors.



out the

You then choose the factor pair which you believe will be the most efficient to work out the problem.

|   | 1 | 2   | 0 |   |    |   | 0 | 3 | 0 |
|---|---|-----|---|---|----|---|---|---|---|
| 6 | 7 | 12, | 0 |   |    | 4 | + | 3 | 0 |
| 7 | 2 | 0   |   | 2 | 11 |   | 2 | 0 |   |
| 1 | d | 0   | ÷ | d | 4  | - | 3 | 0 |   |





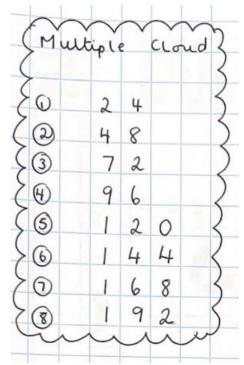
#### Multiple Clouds

However, we cannot always use the factor pairs method. The previous method only works when the dividend is divisible without a remainder. Therefore, we can also use the multiple cloud method.

Let's look at the problem of 721 divided by 24.

Firstly, we would work out the multiples of 24 on the side. We could use mental calculation strategies to do this e.g. add 20 then count along 4.

Additionally, when you have worked out  $2 \times 24$ , you can double it to get 4. Likewise with  $24 \times 3$ , double it and you then have  $24 \times 6$ .


| MW         | lt ip L | e | Cla | nid | 2 |
|------------|---------|---|-----|-----|---|
| 0          | 2       | 4 |     | 79  | < |
| 2          | 4       | 8 |     |     | < |
| 3          | 7       | 2 |     |     |   |
| 4          | 9       | 6 |     |     |   |
| <u>(5)</u> | 1       | 2 | 0   |     | 1 |
| 6          | 1       | 4 | 4   |     | < |
| 1          |         | 6 | 8   |     | < |
| 8          | 1       | 9 | 2   |     | < |





Once we have calculated our multiple clouds (typically going up to x8), we can then calculate the question by using the bus-stop method.

|   |   | 0 | 3  | 0 | r | 1 |
|---|---|---|----|---|---|---|
| 2 | 4 | 7 | 72 | 1 |   |   |





